Cardiac resynchronization therapy

Cecilia Linde, MD, FESC,FHFA, FEHRA Professor Karolinska Institutet Karolinska University Hospital Secretary/Treasurer ESC 2022-2024 Incoming President Elect ESC 2024-2026

Stockholm

Sweden 11 mill inhabitants Public health care 7 university hospitals **Research grants** to institution from Astra Zeneca, Roche Diagnostics, Swedish Heart-Lung foundation, Swedish Academy of Science and Stockholm County Council

Speaker honoraria from Medtronic, Abbot, Novartis, Vifor, Impulse-Dynamics, Bayer, Astra Zeneca, Boehringer-Ingelheim

Cardiac resynchronisation therapy in patients with HF and QRS prolongation/LBBB

Disease modifying and life-saving

- Improves survival
- Reduces heart failure hospitalisations
- Through reverse remodelling

Improves symptoms

• And improves exercise tolerance, quality of life

Applicable in 20% of HFrEF-patients in NYHA II-IV but only about 1 in 5 gets therapy

CRT reduces total mortality and HF hospitalizations *in all randomised trials*

Meta-analysis of 3872 patients in 5 RCT:NYHA II-IV HF in sinus rhythm randomized to CRT vs control

"This **individual patient data** meta-analysis confirms the substantial benefits of CRT on morbidity and mortality in patients with mild, moderate, or severe HF symptoms who have left ventricular systolic dysfunction, **are in sinus rhythm, and have a prolonged QRS**."

Cleland JG et al. Eur Heart J. 2013;34:3547-56

What do the 2021 ESC HF guidelines say?

Heart failure medication need to be introduced rapidly

https://www.cfrjournal.com/video-index/aha-22late-breaker-discussion-strong-hf-trial

A late-breaker-discussion-str

CRT needs to be introduced rapidly to obtain the best results and modify heart failure

The outcome of LBBB patients with HF in Stockholm who received CRT vs those who did not

Delay time from CRT implantation from indication (LBBB on ECG) was 137 (35–378) days or 4.5 months.

Delay was associated with higher mortality and more HF hospitalizations

EHRA/2024

Gatti P et al Europace (2023) 25, 1–12

Timing of CRT implantation in UK

Jamie Walton ()², Joseph de Bono ()², Giuseppe Boriani ()³, and Tian Qiu²

FHR

Best outcome if CRT was implanted early in a British nationwide registry

Recommendations for cardiac resynchronization therapy in patients in sinus rhythm (1) And left bundle branch block LBBB					
Recommendations			Class	Level	
LBBB QRS morphology					
CRT is recommended for QRS duration ≥150 ms improve symptoms and	symptomatic patients with HF in SR with and LBBB QRS morphology despite OMT, ir reduce morbidity and mortality.	LVEF ≤35%, n order to	I.	А	
CRT should be considerer ≤35%, QRS duration 130 order to improve sympto	d for symptomatic patients with HF in SR –149 ms and LBBB QRS morphology desp oms and reduce morbidity and mortality.	with LVEF vite OMT, in	lla	В	

CRT = cardiac resynchronization therapy; HF = heart failure; LBBB = left bundle branch block; LVEF = left ventricular ejection fraction; OMT = optimal medical therapy; SR = sinus rhythm.

QRS Width and Bundle branch block morphology

- QRS width was the inclusion criteria in RCT
- 65% in RCT had LBBB
- 10% had RBBB meaning there is little evidence in each RCT
- 25% intraventricular conduction disturbance

Individual patient based meta-analysis of 8 randomized trials *no benefit of CRT in RBBB*

Friedman D et al Circulation. 2023;147:812–823.

		886B,	QRS < 150 ms	Мо	rtality	and HFH		R888, 0	2RS ≥ 150 ms		
Study	CRT	No CRT	Hazanti ratio		Weight	Study	CRT	No CRT	Hazard ratio	1	Weight
BLOCK-HF	\$910	03	1.19 (0.68 - 2.62)		\$.9%	BLOCK-HF	7/14	9/2	0.07 (0.68 - 1.43)		6.6%
MRACLE	3/3	114	1 20 10 68 - 4 621		0.4%	MRACLE	NH-	1/13	0.96 (0.66 - 1.38)		5.1%
MIRACLE ICD	5/2	26	1.10 (0.64 - 2.50)	-	0.9%	MRACLE-ICD	8/98	3/12	0.97 [0.67 - 1.42]		1.3%
VIRACLE-ICD 0	301	02	1.13 (0.59 - 2.31)		0.4N	MIRACLE-ICO II	0/0	2/16	0.96 (0.66 - 1.37)		12%
REVERSE	0/5	10	1.14 (0.60 - 2.22)		1.3%	REVERSE	0/98	20	0.95 (0.65 - 1.36]	Sector Sector	2.7%
RAPT.	6(20	10/50	1.18 (0.85 - 2.14)	-	27.1%	RAFT	22/48	2282	0.07 (0.60 - 1.38)		33.6%
COMPANION	2043	2/7	1.14 (5.60 - 1.94)		10.6%	COMPANION	60/95	W20	0.95 (0.67 - 1.33)		11.8%
MADIT-ORY	1049	10/46	1.04 (0.51 - 1.78)	-	54.2%	MADIT-CRT	24/75	540	0.56 (0.6? - 1.35)		40.6%
Overall	41/133	26/102	1.15 [0.87 - 2.09]		_	Overall	112/278	57/173	0.97 (0.68 - 1.34)	-	_

LBBB n=4549 IVCD n=1024 RBBB n=691

		R888,	QRS < 150 ms		Mortality			R888,	QRS ≥ 190 ms		
Study	CRT	No CRT	Mazard ratio		Weight	Study	CRT	No CRT	Nexard ratio		Weight
SLOCK1/F	\$/10	00	0.07-33-44 - 1.99		5.5%	BLOCK-HE	1/14	0/2	0.64 (0.53 - 1.37)		5.5%
MIRACLE	1/3	341	0.65 (0.43 - 1.87)	-	- 8.9%	MRACLE	6/3	1:12	0.84 (0.65 - 1.38)	·······	0.8%
MRACLE-ICD	0/2	386	0.03(0.4)-1.94		0.0%	MRACLE-ICD	0/16	0/13	0.02 (0.51 - 1.32)		1.4%
MIRACLE-ICO II	0/1	6.9	0.84 [0.41 - 1.85]		- 0.3%	MRACLE4CD II	0.6	1016	0.84 (0.62 - 1.40)		1.2%
REVERSE	0/5	03	0.64 (0.41 - 1.60)	-	1.4%	REVERSE	0/16	0/6	0.00 (0.61 - 1.07)	· · · · · · · · · · · · · · · · · · ·	2.5%
RAFT	120	8/30	0.80 (0.41 - 1.75)		26.6%	RAFT	12/88	24/62	0.03 (0.64 - 1.86)		14.8%
COMPANION	HGM3	2/7	0.64 [0.44 - 1.73]		11.0%	COMPANION	22/95	6/20	0.62 (0.54 - 1.00)		15%
MADIT-CRT	2949	5/48	0.80 (0.39 - 1.87)	-	03.5%	MADIT-CRT	16/78	344	0.87 (0.55 - 1.64)		38.7%
Overall	20/133	17/102	0.84 (0.43 - 1.76)	-		Overall	61/278	36/174	0.83 (0.55 - 1.33)	-	

Graphical Abstract

Friedman DJ et al Heart Rhythm 2024

1 million PMs or ICDs are implanted/ year worldwide.

Nearly 30% develop LV systolic dysfunction due to RV pacing

which may lead to heart failure and hospitalisations

But upgrading to CRT or CSP had little scientific evidence

Results of BUDAPEST-CRT Upgrade study

Patients with Pacing induced cardiomyopathy randomised to upgrade to ICD or CRTD CRTD Primary endpoint Secondary of HFH/total mortality

Merkely B et al Eur Heart J. 2023 Oct 21;44(40):4259-4269

BP

EHRA/2024 •

Optimized implementation of cardiac resynchronization therapy: a call for action for referral and optimization of care

A joint position statement from the Heart Failure Association (HFA), European Heart Rhythm Association (EHRA), and European Association of Cardiovascular Imaging (EACVI) of the European Society of Cardiology

Wähled Nation^{1,3}, Angela Aurichio³, Pieter Murtan^{1,4}, Klaus Witter,⁴ Murine R. Cowie¹, Victoria Dhagada, Kanenet Dioktenio¹, Cacita Ludei⁴, Kerin Yemogh^{1,4}, Francisco Loya^{1,1}, Johann Baueraschi^{1,1}, Carten W. Kirnstl^{1,1}, Lars H. Ludei⁴, Feranzo Danil², Giaogene Borinn^{11,1}, 'Taya Jammi ^{1,1}, Antonio Borruzo^{1,2}, Vasal Trayko^{1,4}, Zaheer Yoant^{1,1}, Zaheer Nauril^{1,1}, Jaeo Stefan^{1,1}, Jaeo Stefan^{1,1}, Jahor Startel^{1,1}, Zaheer Nauril^{1,1}, Jaeo Stefan^{1,1}, Jaeo Stefan^{1,1}, Jaeo Stefan^{1,1}, Jantee Casta^{1,1}, Petar Seferosch^{1,1}, Ther Edvardsen¹¹, Hein Heidbuchel¹¹, Frank Ruschitzla¹¹, and Christoph Letterq¹¹.

Role of cardiac resynchronization therapy in modifying the heart failure disease trajectory

CRT should be classified as a treatment for 'disease modification'. A slowing of a progressive disease is a positive outcome.

Mullens W et al. Eur J Heart Fail. 2020;22:2349-69; Mullens W et al. Europace. 2021;23:1324-42

5-year analysis of the REVERSE trial

Patients who worsened within 1st year of CRT had high mortality Those stabilized (unchanged) had comparable 5-year survival as those who improved Indicating that "non-responder" classification should be modified

CRT is life-saving, but implementation is poor

Figure 1 Cardiac resynchronization therapy pacemake (CRT-P) and cardiac resynchronization therapy defibrillato (CRT-D) implants in Europe between 2014 and 2019. Source https://www.medtecheurope.org/.

Median number of CRT implantations = 62

From EHRA White book 2017 and CRT Survey II in 11 088 patients

European Journal of Heart Failure (2018) 20, 1039-1051 doi:10.1002/ejhf.1142 **RESEARCH ARTICLE**

CRT Survey II: a European Society of Cardiology survey of cardiac resynchronisation therapy in 11 088 patients—who is doing what to whom and how?

Implantation success rate

European Journal of Heart Failure (2018) 20, 1039-1051 doi:10.1002/ejhf.1142 **RESEARCH ARTICLE**

CRT Survey II: a European Society of Cardiology survey of cardiac resynchronisation therapy in 11 088 patients—who is doing what to whom and how?

Kenneth Dickstein^{1,2*}, Camilla Normand^{1,2}, Angelo Auricchio³, Nigussie Bogale¹, John G. Cleland⁴, Anselm K. Gitt^{5,6,7}, Christoph Stellbrink⁸, Stefan D. Anker^{9,10}, Gerasimos Filippatos¹¹, Maurizio Gasparini¹², Gerhard Hindricks¹³, Carina Blomström Lundqvist¹⁴, Piotr Ponikowski¹⁵, Frank Ruschitzka¹⁶, Giovanni Luca Botto¹⁷, Alan Bulava^{18,19,20}, Gabor Duray²¹, Carsten Israel²², Christophe Leclercq²³, Peter Margitfalvi²⁴, Óscar Cano²⁵, Chris Plummer²⁶, Nedim Umutay Sarigul^{27,28}, Maciej Sterlinski²⁹, and Cecilia Linde³⁰

Successful implantation of biventricular pacemaker in 97% in 288 centres across 42 ESC countries

Reasons for unsuccessful implantation of LV lead in CRT Survey II

	M	<u>Men</u>	W		
	CRT-P (n = 2,220)	CRT-D (n - 5,857)	CRT-P (n - 998)	CRT-D (n - 1,588)	p Value
LV lead placement					
Successful LV placement	99.8 (2,204/2,208)	99.4 (5,766/5,800)	99.3 (980/987)	99.0 (1,558/1,574)	0.009
Epicardial approach	9.3 (205/2,204)	9.0 (517/5,766)	8.5 (83/980)	10.3 (161/1,558)	
Reason for LV lead placement failure					0.992
CS not identified	25.0 (1/4)	17.6 (6/34)	14.3 (1/7)	18.8 (3/16)	
Extracardiac stimulation	0.0 (0/4)	0.0 (0/34)	0.0 (0/7)	0.0 (0/16)	
No suitable coronary vein	50.0 (2/4)	55.9 (19/34)	57.1 (4/7)	50.0 (8/16)	
Complication	0.0 (0/4)	5.9 (2/34)	14.3 (1/7)	6.3 (1/16)	
Other	25.0 (1/4)	20.6 (7,734)	14.3 (1/7)	25.0 (4/16)	

Auricchio A et al JACC EP 2019

Biventricular or left bundle LBB area pacing

Permanent Left Ventricular Pacing With Transvenous Leads Inserted Into The Coronary Veins

J. CLAUDE DAUBERT¹, PHILIPPE RITTER², HERVÉ LE BRETON¹, DANIEL GRAS^{1,2}, CHRISTOPHE LECLERCQ¹, ARNAUD LAZARUS², JACQUES MUGICA², PHILIPPE MABO¹ and SERGE CAZEAU²

From the ¹Service de Cardiologie A, Hotel Dieu/CHRU 35033 Rennes Cedex, ²Département de Stimulation Cardiaque, Centre Chirurgical du Val d'Or, Saint-Cloud France PACE 1998;21:239-245

CLINICAL RESEARCH

Arrhythmias

Left bundle branch area pacing outcomes: the multicentre European MELOS study

Marek Jastrzębski ()^{1*}, Grzegorz Kiełbasa¹, Oscar Cano ()^{2,3}, Karol Curila⁴, Luuk Heckman⁵, Jan De Pooter⁶, Milan Chovanec⁷, Leonard Rademakers⁸, Wim Huybrechts⁹, Domenico Grieco¹⁰, Zachary I. Whinnett¹¹, Stefan A.J. Timmer¹², Arif Elvan ()¹³, Petr Stros⁴, Paweł Moskal¹, Haran Burri ()¹⁴, Francesco Zanon ()¹⁵, and Kevin Vernooy ()^{4,16}

Prospective, multicenter, registry-based observational study

14 European centres

Independent predictors of LBBAP lead implantation failure

Heart failure indication Baseline QRS duration, per 10 ms LVEDD, per 10 mm increase OR 1.49, 95% CI 1.01–2.21 OR 1.08, 95% CI 1.03–1.14 OR 1.53, 95% CI 1.26–1.86

LBBAP implantation success	
Bradycardia indication success	92.4%
Heart failure indication success	82.2%

LBBAP lead complications	8.3%
 Acute perforation to LV 	3.7%
Lead dislodgement	1.5%
Acute chest pain	1.0%
Capture threshold rise	0.7%
Acute coronary syndrome	0.4%
Trapped/damaged helix	0.4%
Delayed perforation to LV	0.1%
Other	0.7%

CRT is used in a minority of eligible patients

HFrEF patients in the ESC-HF-Long Term Registry (n = 1031) and the Swedish Heart Failure Registry (n = 5008)

In ESC-HF-LT, 36% had a CRT indication, of which 47% had CRT.

In SwedeHF, 30% had a CRT indication, of which 25% had CRT.

Independent predictors of CRT use included AF, milder HF (NYHA I-II), and greater use of GDMT.

Results suggest suboptimal in-house and external referral patterns as well as lack of awareness of CRT therapy.

Gatti P et al. Eur Heart J Qual Care Clin Outcomes. 2023; Apr 19 [Online ahead of print]

The Heart failure clinics are the sources of knowledge What is done at all Stockholm hospital based **HF** clinics?

- Establish correct diagnosis and HF etiology
- **Optimize drug treatment**
- Assess indication for biventricular pacemaker-CRT /ICD
- **Provide Patient-education**
- Physiotherapy

- Individual care plan for patient and primary care
- Interact with primary care and private care

Uniform care process over Stockholm

Take home message

- CRT saves lives and reduced HF hospitalisations
- In Sinus rhythm and wide QRS but not RBBB
- Upgrade to CRT if paced patients develop HF
- Women respond well to CRT
- Body size should be considered in decision making
- Responder term should be replaced by stabilization/improvement
- Worsening during CRT calls for other therapies

Take home message

- CRT Implantation success rate is high
- Lack of appropriate CS branch or accessibility is a limitation
 - LBBAP may help when scientific evidence is ready
- CRT is under-implemented
 - organisation of HF care,
 - education and
 - simplified guidelines may help

The Pacemaker- a Swedish invention

The engineer Rune Elmqvist 1906 - 1997 The Surgeon Åke Senning 1915 - 2000 The Patient Arne Larsson 1915 - **2001**

1958

Thick, simple, short life

Leadless pacemaker small

Now

Cecilia Linde

Karolinska Institutet

Karolinska University Hospital